GEBZE TECHNICAL UNIVERSITY PHYSICS DEPARTMENT OPTICS LABORATORY EXPERIMENT REPORT MALUS' LAW

Name:	
Department:	-
Partners:	_

DATA and RESULTS

TA:_____

θ	I() measured	I() calculated	θ	I() measured	I() calculated
0					100				
10					110				
20					120				
30					130				
40					140				
50					150				
60					160				
70					170				
80					180				

1. Calculate the intensity I using equation 17 and compare with the measured values and find the percentage error, explain the source of errors.

- 2. Plot I versus θ graphs for experimental and theoric data and make comments.
- 3. Starting from its electric field componenets: $E_x = E_{x0} \cos(\omega t + \varphi_x)$; $E_y = E_{y0} \cos(\omega t + \varphi_y)$ derive the following general expression for polarization of light:

$$\frac{E_x^2}{E_{x0}^2} + \frac{E_y^2}{E_{y0}^2} - 2 \frac{E_x}{E_{x0}} \frac{E_y}{E_{y0}} \cos \delta = \sin^2 \delta$$

where $\delta = \delta_y - \delta_x$.

90

4. By using above polarization equation, show that (i) $\delta_x = \delta_y$, (ii) $\delta = \pi/2$, (iii) $\delta = \pi/2$ and $E_{x0} = E_{y0}$ corresponds to linearly, elliptically and circularly polarized light respectively.

5. Define s and p-type polarization for light waves. Define Brewster's angle and propose a method to determine it.

6. What are the practical methods of producing polarized light? Explain these methods from physical fundamentals.

DISCUSSION & CONCLUSION

- 1. What are the possible errors in the experiment?
- 2. What kind of approximations did you take into consideration while you were obtaining the physical quantities and how do they affect your results?
- 3. What discrepancies did you encounter between the calculated quantities and theoretical or literature values?
- 4. What is your overall conclusion?